The Koala and its Retroviruses: Implications for Sustainability and Survival
edited by
Geoffrey W. Pye, Rebecca N. Johnson, and Alex D. Greenwood

Preface ... Pye, Johnson, & Greenwood 1
A novel exogenous retrovirus ... Eiden 3
KoRV and other endogenous retroviruses Roca & Greenwood 5
Molecular biology and evolution of KoRV Greenwood & Roca 11
Prevalence of KoRV .. Meers, Simmons, Jones, Clarke, & Young 15
Disease in wild koalas .. Hanger & Loader 19
Origins and impact of KoRV .. Simmons, Meers, Clarke, Young, Jones, Hanger, Loader, & McKee 31
Koala immunology ... Higgins, Lau, & Maher 35
Disease in captive Australian koalas Gillett 39
Molecular characterization of KoRV Miyazawa 47
European zoo-based koalas ... Mulot 51
KoRV in North American zoos .. Pye, Zheng, & Switzer 55
Disease at the genomic level ... Neil 57
Koala retrovirus variants .. Young 59
KoRV epidemiology research priorities Witte 61
Prevention and treatment of KoRV infection Lifson 65
Immunization with envelope proteins Denner 71
Human restriction factors and KoRV Xu, Blankenship, & Eiden 79
Murine leukemia viruses .. Fan 83
KoRV and Chlamydia .. Timms 89
The Koala Genome Consortium Johnson, Hobbs, Eldridge, King, Colgan, Wilkins, Chen, Prentis, Pavasovic, Polkinghorne, & Timms 91
Anti-retroviral drugs and vaccines Levy & Lifson 93
Managing the spread of KoRV .. Ivy 97
Safety considerations handling KoRV Xu & Stoye 99
The future of KoRV research ... Pye, Johnson, & Greenwood 103

nature culture discover
Australian Museum science is freely accessible online at
http://australianmuseum.net.au/journalfinder
6 College Street, Sydney NSW 2010, Australia
Preface

to Papers Presented at the Koala Retrovirus Workshop,
San Diego Zoo, April 2013

GEOFFREY W. PYE,*1 REBECCA N. JOHNSON,2 AND ALEX D. GREENWOOD3

1 San Diego Zoo Global, San Diego, CA 92101, United States of America
2 Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney NSW 2010, Australia
3 Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
gpye@sandiegozoo.org · rebecca.johnson@austmus.gov.au · greenwood@izw-berlin.de

This volume presents peer-reviewed papers from the oral presentations and break-out group-sessions delivered at the San Diego Zoo Global Koala Conservation Workshop: The Koala and its Retroviruses: Implications for Sustainability and Survival meeting, held at San Diego Zoo, 17–18 April 2013. Over 70 participants from Australia, Europe, Japan, and North America attended, including experts in the fields of koala care, conservation, ecology, epidemiology, immunology, molecular biology, population management, retrovirology, veterinary medicine, and zoonoses.

The recognition of lymphoid neoplasia in koalas (Backhouse & Billinger, 1960; Canfield et al., 1987) and its likely association with a retrovirus (Canfield et al., 1988; Worley et al., 1993; Hanger et al., 2000; Tarlinton et al., 2005) stimulated research amongst virologists as they excitedly studied what they believed to be the first real-time endogenization of a retrovirus (Tarlinton et al., 2006; Stoye, 2006; Oliveira et al., 2007; Tarlinton et al., 2008). More recent work has shown a suspected exogenous spread of KoRV in southern Australia (Simmons et al., 2012) as well as an extension of the possible time line of the endogenization (Ávila-Arcos et al., 2013).

In addition, research has demonstrated the possibility of trans-species transmission (Fiebig et al., 2006), identification of the KoRV receptor as PiT1 (Oliveira et al., 2006), identification of the virus in koalas in Japanese and German zoos (Fiebig et al., 2006; Miyazawa et al., 2011) and the ability to detect presence of the virus in fecal material (Miyazawa et al., 2011).

The recent isolation of a variant from the originally sequenced koala retrovirus, isolated from koalas dying from lymphoid malignancies in a North American zoo (Xu et al., 2011; Xu et al., 2013), and the concern it generated about population management prompted San Diego Zoo Global
to identify the need for a workshop to initiate the expansion of KoRV knowledge from foundational research to applied research, in order to promote the sustainability and survival of the koala.

The first day of the workshop was based on the current state of foundational research of KoRV, the level of impact of KoRV on both captive and free-ranging koala populations, the different disease entities that may be related to KoRV infection, koala immunology, and what future research is needed to further our understanding of KoRV. The second day was based on the need for applied research, what we could extrapolate from other well-researched retrovirus models (e.g., HIV treatment, FeLV vaccination), the role of KoRV in Chlamydial infections in koalas, strategies to reduce the spread and disease expression of KoRV, and to determine the zoonotic risk of KoRV.

The research presented and discussed at the two-day workshop demonstrated that although much progress has been made in understanding KoRV and its influence on koala health, a great deal remains to be learned and further empirical scientific data gathered to improve our understanding of this retrovirus in koalas.

References

